Search results for " Photoelectrochemical Measurements"
showing 3 items of 3 documents
Synergistic Use of Electrochemical Impedance Spectroscopy and Photoelectrochemical Measurements for Studying Solid State Properties of Anodic HfO2
2017
Within the past years, intense research has been carried out on HfO2 as high k material, promising candidate to replace SiO2 as gate dielectric in CMOS based devices (1), and as metal oxide for resistive random access memory (ReRAM) (2). For both technological applications compact, uniform and flat oxides are necessary, and a detailed understanding of their physical properties as a function of the fabrication conditions is strongly. Hafnia performance can be significantly influenced by carrier trapping taking place at pre-existing precursors states (induced by oxygen vacancies, interstitial ions, impurities acting as dopants), or by self-trapping in a perfect lattice, where the potential we…
Photoelectrochemical Evidence of Cu2O/TiO2 Nanotubes Hetero-Junctions formation and their Physicochemical Characterization
2014
Cu2O/TiO2 nanotubes heterojunctions were fabricated by electrochemical deposition of cuprous oxide on TiO2 nanotubes arrays grown by anodizing. X-ray diffraction and Raman Spectroscopy analysis allows for identification of Cu2O, whose morphological features were studied by Scanning Electron Microscopy as a function of the charge circulated during the electrodeposition step. Photoelectrochemical measurements in aqueous solutions evidenced a red shift of the light absorption threshold of TiO2 nanotubes due to the presence of cuprous oxide even for very low circulated charges, while electrochemical impedance measurements proved a significant reduction of the electrode impedance due the presenc…
Electrodeposition and characterization of Mo oxide nanostructures
2015
Template electrodeposition has been used to grow uniform arrays of molybdenum oxide nanostructures in polycarbonate membrane. Several parameters have been investigated, like electrodeposition, time and solution pH. These parameters do not influence the nature of the deposit that always consists of mixed valence molybdenum oxides, whereas the nanostructure morphology changes with pH. In particular, at low pH (2.7), nanotubes are formed, whilst arrays of nanowires are obtained above pH 5.5. This change of morphology is likely due to H2 bubbles evolution during the electrochemical deposition, particularly occurring at low pH. It was found that fast removal of H2 bubbles through vigorous stirri…